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Impurity scattering in f-wave superconductor UPt3
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Abstract. We study theoretically the effect of impurity scattering in f-wave (or E2u) superconductors. The
quasi-particle density of states of f-wave superconductor is very similar to the one for d-wave supercon-
ductor as in hole-doped high Tc cuprates. Also in spite of anisotropy in ∆(k̂), both the reduced superfluid
density and the reduced electronic thermal conductivity is completely isotropic.

PACS. 74.20.-z Theories and models of superconducting state – 74.25.Bt Thermodynamic properties –
74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.)

1 Introduction

After a long controversy, f -wave (or E2u) superconduc-
tivity in UPt3 is established in 1996 [1]. First the thermal
conductivities with the heat current parallel to the c axis
and within the basal plane decrease linearly in T the tem-
perature at low temperature [2]. This is consistent with
E2u but inconsistent with the then prevailing model E1g

[3,4]. Almost at the same time 195Pt Knight shift mea-
surement in UPt3 finds the spin triplet pair [5]. Later they
find also among three phases A, B and C in UPt3, only B
phase is nonunitary [5]. This is again consistent with E2u

but not with E1g. The details of the spin configuration of
different phases are described in [6]. In the limit H goes
to zero the order parameter in the B phase reverts to the
doubly degenerate unitary one.

So we can write down the superconducting order pa-
rameter

∆(k̂) = α∆d̂k3(k1 ± ik2)2 (1)

and α = 3
√

3
2 , d̂ ‖ c and k is the quasi-particle momentum.

Very recently we have shown that f -wave supercon-
ductivity describes quite well the observed upper critical
field in UPt3 [7,8].

The object of this paper is to study the impurity effect
in f -wave superconductivity. It is well known that impu-
rity produces profound effect in unconventional supercon-
ductors [9,10]. Also for the analysis of transport properties
the impurity scattering is crucial. Following [3,4] we as-
sume that the impurity scattering is in the unitarity limit.
Then we analyze the thermodynamic and transport prop-
erties. In particular we find both the reduced superfluid
density and the reduced electronic thermal conductivity
are completely isotropic (or ρs(T )/ρs(0) and κel(T )/κel(0)
are isotropic).
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The present result describes reasonable well the
temperature dependence of the ultrasonic attenuation
coefficient of UPt3 [11,12]. Also the deviation from the
universal limit in the low temperature thermal conductiv-
ity [13] in f -wave superconductor is very similar but some-
what larger than in d-wave superconductor [9], which may
be consistent with the recent measurement of electron-
irradiated UPt3 [14]. A part of the present work has been
reported in [15]

2 Formulation

Following the standard approach the effect of impurity
scattering is incorporated by replacing the frequency ω in
the quasi-particle Green function in the Nambu space by
the renormalized one ω̃.

G−1(ω,p) = ω̃ − ξρ3 − α∆ρ1k3(k1 ± ik2ρ3)2σ1 (2)

and

ω̃ = ω + iΓ

〈
ω̃√

ω̃2 −∆2f2

〉−1

(3)

where ρi are the Pauli matrices in the Nambu space, Γ =
ni/πN0 the scattering rate, f = α sin2 θ cos θ and 〈· · · 〉
means the average on the Fermi surface.

Then the Gap equation is given by

λ−1 = 2πT
1
〈|f |2〉

′∑
n

〈
|f |2√

ω̃2
n +∆2|f |2

〉
(4)

here 〈f2〉 = 18
35 , λ is the dimensionless coupling constant,

and ω̃n is the renormalized Matsubara frequency. When
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Fig. 1. T/Tc0,∆(Γ, 0)/∆00 and N(0)/N0 versus Γ/Γc.

∆ → 0, we obtain the universal Abrikosov-Gor’kov for-
mula [16]

− ln
(
Tc

Tc0

)
= ψ

(
1
2

+
Γ

2πΓc

)
− ψ

(
1
2

)
(5)

where Tc(Tc0) is the superconducting transition tempera-
ture in the presence (absence) of impurities. Also we have
Tc = 0 when Γ = Γc = π

2γTc0 = 0.8819Tc0. For T = 0K,
equation (4) reduced to

− ln
(
∆(Γ, 0)
∆00

)
=

1
〈f2〉

{
−C0

〈
f2√

C2
0 + f2

〉

+

〈
f2 ln

(
C0 +

√
C2

0 + f2

f

)〉

+ζ
∫ ∞
C0

du〈 f2

(u2 + f2)3/2
〉〈 1√

u2 + f2
〉−1

}
(6)

where ζ = Γ
∆ and iC0 = u(≡ ω̃

∆ )|ω=0 is given by

C2
0 = ζ〈 1√

C2
0 + f2

〉−1 ⇒
√

3ζ
[
ln
(

1
C0

)
+ const.

]−1

(7)

where the last expression is the limiting value for ζ → 0.
Also the residual density of states is given by

N(0)
N0

= C0〈
1√

C2
0 + f2

〉 =
ζ

C0
=

Γ

∆C0
· (8)

We show in Figure 1 Tc/Tc0,∆(Γ, 0)/∆00, and N(0)/N0

versus Γ/Γc. This figure is strikingly similar to the one in
d-wave superconductor [9].

The quasi-particle density of states is given by

N(E)
N0

= Re

〈
ω̃√

ω̃2 −∆2f2

〉
(9)
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Fig. 2. The quasi-particle density states N(E)/N0 versus E/∆
for several Γ/∆. a) for f-wave, b) for d-wave superconductor
respectively.

where we put E = ω in equation (3). This is shown for
a few ζ = Γ/∆ versus E/∆ in Figure 2a. We display in
Figure 2b the corresponding one for d-wave superconduc-
tor [17]. They are also very similar except for large value
of ζ. For larger ζ, N(E)/N0 for f -wave superconductor
approaches the normal state result much faster.

Also equation (4) is solved numerically and we show
∆(Γ,T )
∆00

for a few g = Γ/Γc versus T/Tc0 in Figure 3.

3 Thermodynamics

It is convenient to start with the entropy given by

S = −4
∫ ∞

0

dEN(E) [f ln f + (1− f) ln(1− f)]

= 4
∫ ∞

0

dEN(E)
[
βE(1 + eβE)−1 + ln(1 + e−βE)

]
.

(10)
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Fig. 3. ∆(Γ, T )/∆00 versus T/Tc for several g = Γ/Γc.
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Fig. 4. D(T/Tc) versus (T/Tc)
2. In the pure limit |D(T/Tc)|

is much larger than the one for s-wave superconductor. But
|D(T/Tc)| decrease monotonically with increasing g = Γ/Γc.

Then we obtain

H2
c (T )
8π

=
∫ Tc

T

dT (Sn(T )− S(T )) (11)

and Sn(T ) = 2π2

3 N0T the entropy in the normal state and
Hc(T ) is the thermodynamic critical field. In Figure 4 we
show D( TTc

) versus (T/Tc)2, where

D

(
T

Tc

)
=
Hc(T )
Hc(0)

−
(

1−
(
T

Tc

)2
)

(12)

for several g = Γ/Γc.
Also the specific heat is given by Cs = T dS

dT . In Figure 5
we show Cs/γnT where γn = 2π2

3 N0. The specific heat
thus obtained is quite consistent with the observation [18].
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Fig. 5. Cs/γNT versus T/Tc0.

We are concerned here with the phase Tc−. Perhaps the
more details of the theory can be tested within the system
with controlled impurity concentration [14].

Finally the reduced superfluid density is isotropic and
given by

ρs(Γ, T ) = 2πT
∞∑
n=0

〈
∆2f2

(ω̃2
n +∆2f2)3/2

〉
. (13)

Here we put ρs(0, 0) = 1. This follows from the relation

3
∫ 1

0

z2F (f) =
3
2

∫ 1

0

(1− z2)F (f) =
∫ 1

0

dzF (f) (14)

where F is an arbitrary function of f = 3
√

3
2 z(1− z2).

First at T = 0 K, equation (13) reduces to

ρs(Γ, 0) = 1− N(0)
N0

+ ζ

∫ ∞
C0

du


〈

f2

(u2 + f2)3/2

〉
〈

u√
u2 + f2

〉


2

.

(15)

This is shown in Figure 6 versus Γ/Γc together with the
one in d-wave superconductor. They are almost indistin-
guishable one from the other.

Finally ρs(Γ, T ) for several g versus T
Tc

is shown in
Figure 7. In the pure limit ρs(Γ, T ) decrease linearly with
T as in d-wave superconductor [9,19].

4 Transport properties

Following [21] the ultrasonic attenuation coefficient for the
transverse wave with q ‖ b and e ‖ c and q ‖ b and e ‖ a
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Fig. 6. ρs(Γ, 0) versus Γ/Γc. This behavior is very similar to
the one in d-wave superconductor.
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Fig. 7. ρs(Γ, T ) versus T/Tc0 for several g.

are given by

αsc

αN
=

15ζ
2

∫ ∞
0

dE
2T

sech2

(
E

2T

)
×
∫ 1

0

dzz2(1− z2)
h(u, f)

Im
√
u2 − f2

(16)

and

αsa

αN
=

15ζ
8

∫ ∞
0

dE
2T

sech2

(
E

2T

)
×
∫ 1

0

dz(1− z2)2 h(u, f)

Im
√
u2 − f2

(17)

respectively, where

h(u, f) =
1
2

(
1 +
|u|2 − f2

|u2 − f2|

)
(18)
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Fig. 8. αsc/αN versus T/Tc0 for several g for q ‖ b and e ‖ c.
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Fig. 9. αsa/αN versus T/Tc0 for several g for q ‖ b and e ‖ a.

and u = ω̃/∆ and ω = E in equation (3).
Equations (16) and (17) are evaluated for several g and

shown in Figures 8 and 9 respectively. Recently the ultra-
sonic attenuation in f -wave superconductor is obtained in
the clean limit [20]. The present result is consistent with
both the experiment and the clean limit result. But it ap-
pears to predict somewhat steeper decrease near T = Tc in
the attenuation coefficient than observed experimentally
[11,12].

Finally the thermal conductivity is given by

κs(T )
κn(T )

=
3Γ

2π2∆

∫ ∞
0

dE
2T 3

E2sech2

(
E

2T

)
h(u, f)

Im
√
u2 − f2

(19)

which is shown in Figure 10. Perhaps of more interest is

κ

κ0
= lim
T→0

κs(T )
κs0(T )

=
√

3∆00

∆(Γ, 0)

〈
C2

0

(C2
0 + f2)3/2

〉
(20)
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Fig. 10. κs(T )/κn(T ) versus T/Tc0 for several g. Here κn(T ) =
π2n
3mΓ

T , and n is the electron density.
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versality.

which is shown versus g in Figure 11. This describes the
deviation from the universality ( κ

κ(Γ,0) = 1 for g → 0).
We note the deviation is a little greater than the one for
d-wave superconductors [9].

5 Summary

In summary we have studied the effect of impurity scatter-
ing in f -wave superconductors. We found f -wave super-
conductor behaves in many respects very similar to d-wave
superconductor.

Also we predict the impurity dependence of the ther-
modynamic properties and transport properties of f -wave

superconductors, which should be readily accessible to ex-
periments. Finally the specific heat data from another
triplet superconductor URu2Si2 [22] appears very consis-
tent with f -wave superconductor.

We thank J.P. Brison, and J. Flouquet, T. Ishiguro and Y.
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cation. One of us (KM) thanks Max-Planck Institut für Physik
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